Add like
Add dislike
Add to saved papers

Extension of the transferable aspherical pseudoatom data bank for the comparison of molecular electrostatic potentials in structure-activity studies.

The transferable aspherical pseudoatom data bank, UBDB2018, is extended with over 130 new atom types present in small and biological molecules of great importance in biology and chemistry. UBDB2018 can be applied either as a source of aspherical atomic scattering factors in a standard X-ray experiment (dmin ≃ 0.8 Å) instead of the independent atom model (IAM), and can therefore enhance the final crystal structure geometry and refinement parameters; or as a tool to reconstruct the molecular charge-density distribution and derive the electrostatic properties of chemical systems for which 3D structural data are available. The extended data bank has been extensively tested, with the focus being on the accuracy of the molecular electrostatic potential computed for important drug-like molecules, namely the HIV-1 protease inhibitors. The UBDB allows the reconstruction of the reference B3LYP/6-31G** potentials, with a root-mean-squared error of 0.015 e bohr-1 computed for entire potential grids which span values from ca 200 e bohr-1 to ca -0.1 e bohr-1 and encompass both the inside and outside regions of a molecule. UBDB2018 is shown to be applicable to enhancing the physical meaning of the molecular electrostatic potential descriptors used to construct predictive quantitative structure-activity relationship/quantitative structure-property relationship (QSAR/QSPR) models for drug discovery studies. In addition, it is suggested that electron structure factors computed from UBDB2018 may significantly improve the interpretation of electrostatic potential maps measured experimentally by means of electron diffraction or single-particle cryo-EM methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app