Add like
Add dislike
Add to saved papers

Phason-flips refinement of and multiple-scattering correction for the d-AlCuRh quasicrystal.

The origin of the characteristic bias observed in a logarithmic plot of the calculated and measured intensities of diffraction peaks for quasicrystals has not yet been established. Structure refinement requires the inclusion of weak reflections; however, no structural model can properly describe their intensities. For this reason, detailed information about the atomic structure is not available. In this article, a possible cause for the characteristic bias, namely the lattice phason flip, is investigated. The derivation of the structure factor for a tiling with inherent phason flips is given and is tested for the AlCuRh decagonal quasicrystal. Although an improvement of the model is reported, the bias remains. A simple correction term involving a redistribution of the intensities of the peaks was tested, and successfully removed the bias from the diffraction data. This new correction is purely empirical and only mimics the effect of multiple scattering. A comprehensive study of multiple scattering requires detailed knowledge of the diffraction experiment geometry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app