Add like
Add dislike
Add to saved papers

Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies.

Capacitive deionization (CDI) technologies couple electronic and ionic charge storage, enabling improved thermodynamic efficiency of brackish desalination by recovering energy released during discharge. However, insight into CDI has been limited by discrete experimental observations at low desalination depths (Δ c, typically reducing influent salinity by 10 mM or less). In this study, the performance and sensitivity of three common CDI configurations [standard CDI, membrane CDI (MCDI), and flowable electrode CDI (FCDI)] were evaluated across the operational and material design landscape by varying eight common input parameters (electrode thickness, influent concentration, current density, electrode flow rate, specific capacitance, contact resistance, porosity, and fixed charge). All combinations of designs were evaluated for two influent concentrations with a calibrated and validated one-dimensional (1-D) porous electrode model. Sensitivity analyses were carried out via Monte Carlo and Morris methods, focusing on six performance metrics. Across all performance metrics, high sensitivity was observed to input parameters which impact cycle length (current, resistance, and capacitance). Simulations demonstrated the importance of maintaining both charge and round-trip efficiencies, which limit the performance of CDI and FCDI, respectively. Accounting for energy recovery, only MCDI was capable of operating at thermodynamic efficiencies similar to reverse osmosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app