Add like
Add dislike
Add to saved papers

Assessing the Metabolomic Profile of Multiple Sclerosis Patients Treated with Interferon Beta 1a by 1 H-NMR Spectroscopy.

Metabolomic research has emerged as a promising approach to identify potential biomarkers in multiple sclerosis (MS). The aim of the present study was to determine the effect of interferon beta (IFN ß) on the metabolome of MS patients to explore possible biomarkers of disease activity and therapeutic response. Twenty-one MS patients starting IFN ß therapy (Rebif® 44 μg; s.c. 3 times per week) were enrolled. Blood samples were obtained at baseline and after 6, 12, and 24 months of IFN ß treatment and were analyzed by high-resolution nuclear magnetic resonance spectroscopy. Changes in metabolites were analyzed. After IFN ß exposure, patients  were divided into responders and nonresponders according to the "no evidence of disease activity" (NEDA-3) definition (absence of relapses, disability progression, and magnetic resonance imaging activity), and samples obtained at baseline were analyzed to evaluate the presence of metabolic differences predictive of IFN ß response. The results of the investigation demonstrated differential distribution of baseline samples compared to those obtained during IFN ß exposure, particularly after 24 months of treatment (R2 X = 0.812, R2 Y = 0.797, Q2  = 0.613, p = 0.003). In addition, differences in the baseline metabolome between responder and nonresponder patients with respect to lactate, acetone, 3-OH-butyrate, tryptophan, citrate, lysine, and glucose levels were found (R2 X = 0.442, R2 Y = 0.768, Q2  = 0.532, p = 0.01). In conclusion, a metabolomic approach appears to be a promising, noninvasive tool that could potentially contribute to predicting the efficacy of MS therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app