Add like
Add dislike
Add to saved papers

A RADAR-Based Assay to Isolate Covalent DNA Complexes in Bacteria.

Antibiotics 2019 Februrary 28
Quinolone antibacterials target the type II topoisomerases gyrase and topoisomerase IV and kill bacterial cells by converting these essential enzymes into cellular poisons. Although much is known regarding the interactions between these drugs and enzymes in purified systems, much less is known regarding their interactions in the cellular context due to the lack of a widely accessible assay that does not require expensive, specialized equipment. Thus, we developed an assay, based on the "rapid approach to DNA adduct recovery," or RADAR, assay that is used with cultured human cells, to measure cleavage complex levels induced by treating bacterial cultures with the quinolone ciprofloxacin. Many chemical and mechanical lysis conditions and DNA precipitation conditions were tested, and the method involving sonication in denaturing conditions followed by precipitation of DNA via addition of a half volume of ethanol provided the most consistent results. This assay can be used to complement results obtained with purified enzymes to expand our understanding of quinolone mechanism of action and to test the activity of newly developed topoisomerase-targeted compounds. In addition, the bacterial RADAR assay can be used in other contexts, as any proteins covalently complexed to DNA should be trapped on and isolated with the DNA, allowing them to then be quantified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app