Add like
Add dislike
Add to saved papers

Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum.

Bioresource Technology 2019 Februrary 20
The aim of this work was to study the fermentative production of the N-methylated amino acid sarcosine by C. glutamicum. Characterization of the imine reductase DpkA from Pseudomonas putida revealed that it catalyses N-methylamination of glyoxylate to sarcosine. Heterologous expression of dpkA in a C. glutamicum strain engineered for glyoxylate overproduction enabled fermentative production of sarcosine from sugars and monomethylamine. Glucose-based fermentation reached sarcosine production titers of 2.4 ± 0.1 g L-1 . Sarcosine production based on the second generation feedstocks xylose and arabinose led to higher product titers of 2.7 ± 0.1 g L-1 and 3.4 ± 0.3 g L-1 , respectively, than glucose-based production. Optimization of production conditions with xylose and potassium acetate blends increased sarcosine titers to 8.7 ± 0.2 g L-1 with a yield of 0.25 g g-1 . This is the first example in which a C. glutamicum process using lignocellulosic pentoses is superior to glucose-based production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app