Add like
Add dislike
Add to saved papers

Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode.

Bioelectrochemistry 2019 Februrary 14
A facile one-step electrochemical synthesis of a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) (Pt/rGO/P3ABA) nanocomposite film on a screen-printed carbon electrode (SPCE) and its application in the development of sensitive amperometric biosensors was successfully demonstrated herein. The electropolymerization of P3ABA together with co-electrodeposition of rGO and Pt was conducted by cyclic voltammetry, as was the GO reduction to rGO. A Pt/rGO/P3ABA-modified SPCE exhibited excellent electrocatalytic oxidation towards hydrogen peroxide (H2 O2 ) and can be employed as an electrochemical platform for the immobilization of glucose oxidase (GOx) and cholesterol oxidase (ChOx) to fabricate glucose and cholesterol biosensors, respectively. Under the optimized conditions at a working potential of +0.50 V, the proposed biosensors revealed excellent linear responses to glucose and cholesterol in the concentration ranges of 0.25-6.00 mM and 0.25-4.00 mM, respectively, with high sensitivities of 22.01 and 15.94 μA mM-1  cm-2 and low detection limits (LODs) of 44.3 and 40.5 μM. Additionally, the Michaelis-Menten constant (Km ) of GOx was 3.54 mM, while the Km of ChOx was 3.82 mM. Both biosensors displayed a good anti-interference ability and clearly exhibited acceptable recoveries for the detection of glucose and cholesterol in a human serum sample (98.2-104.1%).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app