Add like
Add dislike
Add to saved papers

Low-dose environmental endocrine disruptors, increase aromatase activity, estradiol biosynthesis and cell proliferation in human breast cells.

BACKGROUND: Phenolic endocrine-disrupting compounds (EDCs) have long been suspected of increasing human breast cancer risk, via aromatase up-regulation; however, the metabolic effects upon aromatase in human breast cells exposed to environmentally relevant concentrations of phenolic compounds, have not been addressed.

OBJECTIVES: To examine the mechanistic responses of aromatase CYP19A1 mRNA, aromatase activity, estradiol biosynthesis and cellular proliferation, in three human breast cell lines, exposed to seven phenolic compounds, at environmentally relevant concentrations.

METHODS: MCF-7 and ZR-75-1 breast cancer cells, and HMF3A breast fibroblasts were treated with specific concentrations of p,p'-DDT, methoxychlor, benzophenone-2, bisphenol A, bisphenol S, 4-phenylphenol and n-butylparaben, with and without the presence of aromatase inhibitors and estrogen receptor inhibitors.

RESULTS: All test EDCs up-regulated aromatase mRNA, increased aromatase activity, significantly increased the aromatase-induced biosynthesis of the breast carcinogen 17β-estradiol, and increased ERα-positive breast cell proliferation.

CONCLUSION: Inadvertent exposures to 'phenolic' EDCs, increase estradiol biosynthesis, and estrogen-sensitive breast cancer proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app