Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

DGAT1 Inhibitor Suppresses Prostate Tumor Growth and Migration by Regulating Intracellular Lipids and Non-Centrosomal MTOC Protein GM130.

Scientific Reports 2019 Februrary 29
Acyl-CoA:diacylglycerol acyltransferase I (DGAT1) is a key enzyme in lipogenesis which is increased in metabolically active cells to meet nutrient requirements. DGAT1 has been recognized as an anti-obesity target; however, its role in the tumor microenvironment remains unclear. We postulated that, in prostate cancer (PCa) cells, augmented lipogenesis and growth are due to increased DGAT1 expression leading to microtubule-organizing center (MTOC) amplification. Thus, therapeutic targeting of DGAT1 potentially has tumor suppressive activity. We tested whether blocking DGAT1 in PCa cells altered MTOC and lipid signaling. Western blot and immunofluorescence were performed for MTOC and triglyceride mediators. Treatment with a DGAT1 inhibitor was evaluated. We found a stepwise increase in DGAT1 protein levels when comparing normal prostate epithelial cells to PCa cells, LNCaP and PC-3. Lipid droplets, MTOCs, and microtubule-regulating proteins were reduced in tumor cells treated with a DGAT1 inhibitor. Depletion of the non-centrosomal MTOC protein GM130 reduced PCa cell proliferation and migration. Inhibition of DGAT1 reduced tumor growth both in vitro and in vivo, and a negative feedback loop was discovered between DGAT1, PEDF, and GM130. These data identify DGAT1 as a promising new target for suppressing PCa growth by regulating GM130, MTOC number and disrupting microtubule integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app