JOURNAL ARTICLE
Dust induces lung fibrosis through dysregulated DNA methylation.
Environmental Toxicology 2019 June
Pneumoconiosis is a serious occupational disease that often occurs to coal workers with no early diagnosis and effective treatment at present. Diffuse pulmonary fibrosis is the major pathological change of pneumoconiosis, and its mechanism is still unclear. Epigenetics is involved in the development of many diseases, and it is closely associated with fibrosis. In this study, we investigated whether DNA methylation contributes to the pathogenesis of pulmonary fibrosis in pneumoconiosis. By exposure to coal dust or silica dust, we established the models of coal worker's pneumoconiosis (CWP), which showed an increased expression of COL-I, COL-III. We further found that DNMT1, DNMT3a, DNMT3b, MBD2, MeCP2 protein expression changed. Pretreatment with DNMT inhibitor 5-aza-dC reduced expression of COL-I, COL-III, and reduced pulmonary fibrosis. In summary, our results showed that DNA methylation contributes to dust-induced pulmonary fibrosis and that it may serve as a theoretical basis for testing DNA methyltransferase inhibitors in the treatment of CWP.
Full text links
Trending Papers
Fluid Resuscitation in Patients with Cirrhosis and Sepsis: A Multidisciplinary Perspective.Journal of Hepatology 2023 March 2
Glucagon-Like Peptide 1 Receptor Agonists Versus Sodium-Glucose Cotransporter 2 Inhibitors for Atherosclerotic Cardiovascular Disease in Patients With Type 2 Diabetes.Cardiology Research 2023 Februrary
Management of Heart Failure With Preserved Ejection Fraction in Elderly Patients: Effectiveness and Safety.Curēus 2023 Februrary
Evaluation and Management of Pulmonary Hypertension in Noncardiac Surgery: A Scientific Statement From the American Heart Association.Circulation 2023 March 17
What's New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD).Journal of Clinical Medicine 2023 Februrary 27
Physical interventions to interrupt or reduce the spread of respiratory viruses.Cochrane Database of Systematic Reviews 2023 January 31
Long COVID: major findings, mechanisms and recommendations.Nature Reviews. Microbiology 2023 January 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app