Add like
Add dislike
Add to saved papers

Dust induces lung fibrosis through dysregulated DNA methylation.

Pneumoconiosis is a serious occupational disease that often occurs to coal workers with no early diagnosis and effective treatment at present. Diffuse pulmonary fibrosis is the major pathological change of pneumoconiosis, and its mechanism is still unclear. Epigenetics is involved in the development of many diseases, and it is closely associated with fibrosis. In this study, we investigated whether DNA methylation contributes to the pathogenesis of pulmonary fibrosis in pneumoconiosis. By exposure to coal dust or silica dust, we established the models of coal worker's pneumoconiosis (CWP), which showed an increased expression of COL-I, COL-III. We further found that DNMT1, DNMT3a, DNMT3b, MBD2, MeCP2 protein expression changed. Pretreatment with DNMT inhibitor 5-aza-dC reduced expression of COL-I, COL-III, and reduced pulmonary fibrosis. In summary, our results showed that DNA methylation contributes to dust-induced pulmonary fibrosis and that it may serve as a theoretical basis for testing DNA methyltransferase inhibitors in the treatment of CWP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app