Add like
Add dislike
Add to saved papers

Multi-parameter optimization of the capacitance of Carbon Xerogel catalyzed by NaOH for application in supercapacitors and capacitive deionization systems.

Heliyon 2019 Februrary
Carbon Xerogel is an economic choice of material for electrodes with applications in Electric Double Layer Capacitors (EDLCs) and Capacitive DeIonization systems (CDI, particularly for desalination). The objective here is to optimize Carbon Xerogel's performance, specifically its capacitance, through multi-parameter optimization using Response Surface Methodology (RSM). We choose NaOH as the catalyst and select as the optimization parameters (i) the pH of the initial Resorcinol-Formaldehyde-Catalyst (RFC) solution, (ii) Reactants to Liquid mass ratio (R/L) of the RFC solution, and (iii) the Pyrolysis Temperature (PT). For a selected range of these three parameters, we obtain an optimum capacitance of Carbon Xerogel equal to 37.6 F/g with optimized parameters PT = 800, R/L = 30% and pH = 5.7. Through comparing Carbon Xerogel samples synthesized with Na2 CO3 versus NaOH as the catalyst, we show that the capacitance not only depends on the pH of the initial RFC solution, but also is a strong function of the catalyst material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app