Add like
Add dislike
Add to saved papers

A comparative biomechanical evaluation of different osteosynthesis techniques used for intracapsular condylar head fractures.

Purpose: The aim of the present experimental study was to evaluate the biomechanical behavior in different types of osteosynthesis (titanium screws, bioresorbable pins and miniplates) used in management of intracapsular condylar head fractures.

Method: Experimental models of the condylar head fractures were simulated on 15 dry human cadaveric mandibles. Osteotomized mandibles were randomly divided into three groups with different fixation systems used: 1) 15 mm long titanium screws, 2) 15 mm long bioresorbable pins Sonic Pins Rx, 3) T-shaped titanium miniplate and 7 mm long titanium screws. Mandibles were loaded in TIRAtest testing machine (Germany). The main types of deformations, including torsion, bending and shearing, were simulated to study the biomechanical characteristics of the fixation systems.

Results: Titanium bicortical screws demonstrated the highest stiffness in standard loading conditions. The fixation with bioresorbable pins showed lower stiffness in both frontal and sagittal loads. This is indicative of the fact that resorbable pins, which have numerous advantages for clinical usage, cannot provide adequately stable fixation in maximal masticatory loads. The mandibles fixed with T-shaped plate had the lowest stiffness.

Conclusion: Screw or pin fixation, regardless of the material used, was not resistant to rotational loads. On the contrary, the stiffness of T-shaped plates was quite significant. In real clinical conditions, if rotational displacements are not effectively compensated by irregularities in the fracture surface and precise repositioning of the bone fragments, combined use of miniplates and bicortical titanium screws or two screws can be beneficial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app