Add like
Add dislike
Add to saved papers

Urapidil, but not dihydropyridine calcium channel inhibitors, preserves the hypoxic pulmonary vasoconstriction: an experimental study in pig arteries.

Hypoxic pulmonary vasoconstriction (HPV) is a protective mechanism maintaining blood oxygenation by redirecting blood flow from poorly ventilated to well-ventilated areas in the lung. Such a beneficial effect is blunted by antihypertensive treatment with dihydropyridine calcium channel inhibitors. The aim of the present study was to evaluate the effect of urapidil, an antihypertensive agent acting as an α1 adrenergic antagonist and a partial 5-HT1A agonist, on HPV in porcine proximal and distal pulmonary artery rings, and to characterize underlying mechanisms. Rings from proximal and distal porcine pulmonary artery were suspended in organ chambers and aerated with a 95% O2 + 5% CO2 gas mixture. HPV was induced by changing the gas to a 95% N2 + 5% CO2 mixture following a low level of pre-contraction with U46619. Hypoxia induced a contractile response in both proximal and distal pulmonary artery rings. This effect is observed in the presence of a functional endothelium and is inhibited by a soluble guanylyl cyclase inhibitor (ODQ), a NO scavenger (carboxy-PTIO), and by catalase in proximal pulmonary artery rings. The endothelium-dependent HPV is prevented by nicardipine and clevidipine but remained unaffected by urapidil in both proximal and distal pulmonary artery rings. These findings indicate that urapidil, in contrast to nicardipine and clevidipine, preserves the hypoxia-triggered vasoconstriction in isolated pulmonary arteries. They further indicate the involvement of the NO-guanylyl cyclase pathway and H2 O2 in HPV. Further research is warranted to determine the potential clinical relevance of the preserved hypoxia-induced pulmonary vasoconstriction by urapidil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app