Add like
Add dislike
Add to saved papers

Multi-joint rate of force development testing protocol affects reliability and the smallest detectible difference.

Isometric tests have been used to assess rate of force development (RFD), however variation in testing methodologies are known to affect performance outcomes. The aim of this study was to assess the RFD in the isometric squat (ISqT) using two test protocols and two testing angles. Eleven participants (age: 26.8 ± 4.5 years, strength training experience: 7.1 ± 3.03 years) completed test and retest sessions one week apart, whereby two test protocols with respect to duration and instructions were compared. Isometric peak force (ISqTpeak ) and isometric explosive force (ISqTexp ) tests were assessed at two joint angles (knee flexion angle 100° and 125°). Force-time traces were sampled and subsequently analysed for RFD measures. Average and instantaneous RFD variables did not meet reliability minimum criteria in ISqTpeak at 100° or 125°. The ISqTexp test at 100° met reliability criteria in the RFD 0-200 and 0-250ms variables. The ISqTexp test at 125° met reliability criteria in the RFD 0-150, 0-200 and 0-250ms variables. Force-time characteristics were optimized at the higher knee joint angle. Average and instantaneous RFD measures obtained using a traditional peak force test do not meet basic reliability criteria. Researchers assessing multi-joint RFD should employ the explosive RFD test protocol as opposed to the traditional isometric peak force protocol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app