Add like
Add dislike
Add to saved papers

Regulation of the dystrophin-associated glycoprotein complex composition by the metabolic properties of muscle fibres.

Scientific Reports 2019 Februrary 27
The dystrophin-glycoprotein complex (DGC) links the muscle cytoskeleton to the extracellular matrix and is responsible for force transduction and protects the muscle fibres from contraction induced damage. Mutations in components of the DGC are responsible for muscular dystrophies and congenital myopathies. Expression of DGC components have been shown to be altered in many myopathies. In contrast we have very little evidence of whether adaptive changes in muscle impact on DGC expression. In this study we investigated connection between muscle fibre phenotype and the DGC. Our study reveals that the levels of DGC proteins at the sarcolemma differ in highly glycolytic muscle compared to wild-type and that these changes can be normalised by the super-imposition of an oxidative metabolic programme. Importantly we show that the metabolic properties of the muscle do not impact on the total amount of DGC components at the protein level. Our work shows that the metabolic property of a muscle fibre is a key factor in regulating the expression of DGC proteins at the sarcolemma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app