Add like
Add dislike
Add to saved papers

MiR-204 inhibits hepatocellular cancer drug resistance and metastasis through targeting NUAK1.

Liver cancer is a leading cause of cancer-related deaths globally. Tumor response rate of liver cancer patients towards systemic chemotherapy is low and chemoresistance can easily develop. Identifying novel molecules that can repress drug resistance and metastasis of liver cancer will facilitate the development of new therapeutic strategies. The aim of this study is to determine the roles of NUAK1 and miR-204 in the drug resistance and metastasis of liver cancer and to reveal their relationship. We found that NUAK1 was increased in the tumor of primary liver cancer. Knockdown of NUAK1 significantly inhibited cell growth and migration. Moreover, NUAK1 was the direct downstream target of miR-204, and there was clinical relevance between miR-204 down-regulation and NUAK1 up-regulation in liver cancer. Furthermore, we found that miR-204 increased drug sensitivity by down-regulating NUAK1 expression. Based on these results, we identified miR-204 as a tumor suppressor by inhibiting NUAK1 expression in liver cancer, indicating both miR-204 and NUAK1 may act as promising targets for liver cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app