Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Experimental study on the use of a chlorhexidine-loaded carboxymethylcellulose gel as antibacterial coating for hernia repair meshes.

PURPOSE: Biomaterials with an antimicrobial coating could avoid mesh-associated infection following hernia repair. This study assesses the use of a chlorhexidine-loaded carboxymethylcellulose gel in a model of Staphylococcus aureus mesh infection.

METHODS: A 1% carboxymethylcellulose gel containing 0.05% chlorhexidine was prepared and tested in vitro and in vivo. The in vitro tests were antibacterial activity (S. aureus; agar diffusion test) and gel cytotoxicity compared to aqueous 0.05% chlorhexidine (fibroblasts; alamarBlue). For the in vivo study, partial abdominal wall defects (5 × 2 cm) were created in New Zealand white rabbits (n = 15) and inoculated with 0.25 mL of S. aureus (106  CFU/mL). Defects were repaired with a lightweight polypropylene mesh (Optilene) without coating (n = 3) or coated with a carboxymethylcellulose gel (n = 6) or chlorhexidine-loaded carboxymethylcellulose gel (n = 6). Fourteen days after surgery, bacterial adhesion to the implant (sonication, immunohistochemistry), host tissue incorporation (light microscopy) and macrophage reaction (immunohistochemistry) were examined.

RESULTS: Carboxymethylcellulose significantly reduced the toxicity of chlorhexidine (p < 0.001) without limiting its antibacterial activity. While control and gel-coated implants were intensely contaminated, the chlorhexidine-gel-coated meshes showed a bacteria-free surface, and only one specimen showed infection signs. The macrophage reaction in this last group was reduced compared to the control (p < 0.05) and gel groups.

CONCLUSIONS: When incorporated in the carboxymethylcellulose gel, chlorhexidine showed reduced toxicity yet maintained its bactericidal effect at the surgery site. Our findings suggest that this antibacterial gel-coated polypropylene meshes for hernia repair prevent bacterial adhesion to the mesh surface and have no detrimental effects on wound repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app