Add like
Add dislike
Add to saved papers

Use of a visible reporter marker- myb-related gene in crop plants to minimize herbicide usage against weeds.

Weeds, a main threat to agricultural productivity worldwide, are mostly controlled by herbicides. To minimize herbicide usage by targeting only weedy areas, we developed a new methodology for robust weed detection that relies on manipulating the crop plant's leaf hue, without affecting crop fitness. We generated transgenic tobacco (Nicotiana tabacum Xanthi) lines overexpressing the anthocyanin pigment as a traceable marker that differentiates transgenes from the surrounding weeds at an early stage. Transformation with the anthocyanin VlmybA1-2 gene produced purple-colored leaves. Subsequent gene silencing with vector pTRV2:VlmybA1-2 significantly reduced anthocyanin pigments in tobacco leaves 40 days after agroinfiltration, with a concomitant reduction in VlmybA1-2 transcript levels. Purple hue faded gradually, and there were no fitness costs in terms of plant height or leaf number in the silenced vs. non-silenced tobacco transgenes. These results could lead to a new sustainable weed-control method that will alleviate weed-related ecological, agricultural and economic issues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app