Add like
Add dislike
Add to saved papers

<i>In vitro</i> evaluation of barium titanate nanoparticle/alginate 3D scaffold for osteogenic human stem cell differentiation.

Biomedical Materials 2019 Februrary 26
Nanomaterials can mimic properties of extracellular matrix molecules, promising great potential for scaffold composition in tissue engineering. In the present study, we investigated whether barium titanate nanoparticles (BT NP) combined with alginate polymer would provide a new cytocompatible three-dimensional (3D) scaffold to induce osteogenic stem cell differentiation. In vitro cytocompatibility and osteogenic differentiation potential were investigated using human mesenchymal stem cells (MSC). Firstly, we studied the cell viability and oxidative stress by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) thiazolyl blue tetrazolium bromide (MTT) and superoxide dismutase (SOD) assays. Overall, neither pure BT NP or BT NP/alginate 3D scaffold induced cytotoxicity. The scanning electron and atomic force microscopy revealed that BT NP/alginate 3D scaffold produced exhibited highly interconnected pores and surface nanotopography that were favorable for MSC differentiation. Von Kossa staining showed mineralization nodules and MSCs morphology changed from spindle to cuboid shape after 21 days. Finally, BMP-2 and ALP mRNA were significantly upregulated on cells grown into the BT NP/alginate 3D scaffold. Thus, the BT NP/alginate 3D scaffold showed an osteogenic differentiation induction potential, without the addition of osteogenic supplements. These results indicate that the BT NP/alginate 3D scaffold provides a cytocompatible and bioactive microenvironment for osteogenic human MSC differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app