Add like
Add dislike
Add to saved papers

Attenuation of doxorubicin-induced cardiotoxicity in a human in vitro cardiac model by the induction of the NRF-2 pathway.

Dose-dependent cardiotoxicity is the leading adverse reaction seen in cancer patients treated with doxorubicin. Currently, dexrazoxane is the only approved drug that can partially protect against this toxicity in patients, however, its administration is restricted to those patients receiving a high cumulative dose of anthracyclines. Investigations into the mechanisms of cardiotoxicity and efforts to improve cardioprotective strategies have been hindered by the limited availability of a phenotypically relevant in vitro adult human cardiac model system. Here, we adapted a readily reproducible, functional 3D human multi-cell type cardiac system to emulate patient responses seen with doxorubicin and dexrazoxane. We show that administration of two NRF2 gene inducers namely the semi-synthetic triterpenoid Bardoxolone methyl, and the isothiocyanate sulfurophane, result in cardioprotection against doxorubicin toxicity comparable to dexrazoxane as evidenced by an increase in cell viability and a decrease in the production of reactive oxygen species. We further show a synergistic attenuation of cardiotoxicity when the NRF2 inducers and dexrazoxane are used in tandem. Taken together, our data indicate that the 3D spheroid is a suitable model to investigate drug induced cardiotoxicity and we reveal an essential role of the NRF2 pathway in cardioprotection providing a novel pharmacological mechanism and intervention route towards the alleviation of doxorubicin-induced toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app