Add like
Add dislike
Add to saved papers

Inhibition of soluble TNFα prevents adverse atrial remodeling and atrial arrhythmia susceptibility induced in mice by endurance exercise.

Intense endurance exercise is linked to atrial fibrillation (AF). We established previously that interventions that simultaneously interfere with TNFα signaling, mediated via both the enzymatically liberated soluble and membrane-bound forms of TNFα, prevent atrial remodeling and AF vulnerability in exercised mice. To investigate which signaling modality underlies this protection, we treated exercised mice with XPRO®1595, a selective dominant-negative inhibitor of solTNFα. In male CD1 mice, 6 weeks of intense swim exercise induced reductions in heart rate, increased cardiac vagal tone, left ventricular (LV) dilation and enhanced LV function. By contrast, exercise induced hypertrophy, fibrosis, and increased inflammatory cell infiltrates in atria, and these changes were associated with increased AF susceptibility in isolated atria as well as mice, with and without parasympathetic nerve blockade. Although XPRO treatment had no effect on the beneficial physiological changes induced by exercise, it protected against adverse atrial changes as well as AF susceptibility. Our results establish that soluble TNFα is required for exercise-induced increases in AF vulnerability, which is linked to fibrosis, inflammation, and enlargement of the atria, but largely independent of changes in vagal tone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app