Comparative Molecular Field Analysis and Molecular Docking Studies on Quinolinone Derivatives Indicate Potential Hepatitis C Virus Inhibitors

Kullappan Malathi, Sudha Ramaiah, Anand Anbarasu
Cell Biochemistry and Biophysics 2019 February 22
Presently, there are no effective vaccines and anti-virals for the prevention and treatment of Hepatitis C virus infections and hence there is an urgent need to develop potent HCV inhibitors. In this study, we have carried out molecular docking, molecular dynamics and 3D-QSAR on heteroaryl 3-(1,1-dioxo-2H-(1,2,4)-benzothiadizin-3-yl)-4-hydroxy-2(1H)-quinolinone series using NS5B protein. Total of 41 quinolinone derivatives is used for molecular modeling study. The binding conformation and hydrogen bond interaction of the docked complexes were analyzed to model the inhibitors. We identified the molecule XXXV that had a higher affinity with NS5B. The molecular dynamics study confirmed the stability of the compound XXXV-NS5B complex. The developed CoMFA descriptors parameters, which were calculated using a test set of 13 compounds, were statistically significant. Our results will provide useful insights and lead to design potent anti-Hepatitis C virus molecules.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"