Add like
Add dislike
Add to saved papers

Mechanical Alloying and Electrical Current-Assisted Sintering Adopted for In Situ Ti-TiB Metal Matrix Composite Processing.

Materials 2019 Februrary 22
In this work, mechanical alloying and electrical current-assisted sintering was adopted for in situ metal matrix composite material processing. Applied at the initial powder stage, mechanical alloying enables a homogeneous distribution of the starting elements in the proposed precursor powder blends. The accompanying precursor preparation and the structurally confirmed size reduction allow obtainment of a nanoscale range for the objects to be sintered. The nano precursors aggregated in the micro-sized particle objects, subjected to electrical current-assisted sintering, characterize the metal matrix composite sinters with high uniformity, proper densification, and compaction response, as well as maintaining a nanoscale whose occurrence was confirmed by the appearance of the highly dispersed reinforcement phase in the examined Ti-TiB material example. The structural analysis of the sinters confirms the metal matrix composite arrangement and provides an additional quantitive data overview for the comparison of the processing conditions. The mechanical alloying examined in this work and the electrical current-assisted sintering approach allow in situ metal matrix composite structures to create their properties by careful control of the processing steps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app