Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A CASPR1-ATP1B3 protein interaction modulates plasma membrane localization of Na + /K + -ATPase in brain microvascular endothelial cells.

Contactin-associated protein 1 (CASPR1 or CNTNAP1) was recently reported to be expressed in brain microvascular endothelial cells (BMECs), the major component of the blood-brain barrier. To investigate CASPR1's physiological role in BMECs, here we used CASPR1 as a bait in a yeast two-hybrid screen to identify CASPR1-interacting proteins and identified the β3 subunit of Na+ /K+ -ATPase (ATP1B3) as a CASPR1-binding protein. Using recombinant and purified CASPR1, RNAi, GST-pulldown, immunofluorescence, immunoprecipitation, and Na+ /K+ -ATPase activity assays, we found that ATP1B3's core proteins, but not its glycosylated forms, interact with CASPR1, which was primarily located in the endoplasmic reticulum of BMECs. CASPR1 knockdown reduced ATP1B3 glycosylation and prevented its plasma membrane localization, phenotypes that were reversed by expression of full-length CASPR1. We also found that the CASPR1 knockdown reduces the plasma membrane distribution of the α1 subunit of Na+ /K+ -ATPase, which is the major component assembled with ATP1B3 in the complete Na+ /K+ -ATPase complex. The binding of CASPR1 with ATP1B3, but not the α1 subunit, indicated that CASPR1 binds with ATP1B3 to facilitate the assembly of Na+ /K+ -ATPase. Furthermore, the activity of Na+ /K+ -ATPase was reduced in CASPR1-silenced BMECs. Interestingly, shRNA-mediated CASPR1 silencing reduced glutamate efflux through the BMECs. These results demonstrate that CASPR1 binds with ATP1B3 and thereby contributes to the regulation of Na+ /K+ -ATPase maturation and trafficking to the plasma membrane in BMECs. We conclude that CASPR1-mediated regulation of Na+ /K+ -ATPase activity is important for glutamate transport across the blood-brain barrier.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app