Add like
Add dislike
Add to saved papers

Induction of Th2-related immune responses and production of systemic IgA in mice intranasally immunized with Brucella abortus malate dehydrogenase loaded chitosan nanoparticles.

Vaccine 2019 Februrary 19
The aim of this study was to investigate the induction of mucosal immune responses by an important Brucella abortus antigen, malate dehydrogenase (Mdh), loaded in mucoadhesive chitosan nanoparticles (CNs) and immunized intranasally in a BALB/c mouse model. The production of cytokines was investigated in human leukemic monocyte cells (THP-1 cells) after stimulation with the nanoparticles. Mdh-loaded CNs (CNs-Mdh) induced higher interleukin (IL)-6 production than unloaded antigens and TF loaded CNs (CNs-TF). Using ELISpot to quantify cytokines and antibody-secreting cells in the intranasally immunized mice, IL-4 and IgG-secreting cells were found to be significantly increased at 4 weeks and 6 weeks post-immunization in the CNs-Mdh immunized group, respectively. Increases in Mdh-specific IgG, IgG1, and IgG2a antibodies were confirmed at 6 weeks after immunization, indicating a predominant IgG1 response. Analysis of the mucosal immune response in the intranasally immunized mice revealed, Mdh-specific IgA and total IgA in the nasal washes, genital secretions, fecal extracts and sera that were remarkably increased in the CNs-Mdh-immunized group compared to the CNs-TF-immunized group except total IgA of nasal wash. Therefore, the results indicated that the intranasal immunization of CNs-loaded B. abortus Mdh antigen effectively induced antigen-specific mucosal immune responses through the elicitation of Th2-related immune responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app