JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer.

Triple-negative breast cancer (TNBC) is an aggressive subset of breast carcinomas that lack expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). Unlike other breast cancer subtypes, targeted therapy is presently unavailable for patients with TNBC. In spite of initial responses to chemotherapy, drug resistance tends to develop rapidly and the prognosis of metastatic TNBC is poor. Hence, there is an urgent need for novel-targeted treatment methods or development of safe and effective alternatives with recognized mechanism(s) of action. AMP-activated protein kinase (AMPK), an energy sensor, can regulate protein and lipid metabolism responding to alterations in energy supply. In the past 10 years, interest in AMPK has increased widely since it appeared as an attractive targeting molecule for cancer therapy. There has been a deep understanding of the possible role of abnormal AMPK signaling pathways in the regulation of growth and survival and the development of drug resistance in TNBC. The increasing popularity of using AMPK regulators for TNBC-targeted therapy is supported by a considerable development in ascertaining the molecular pathways implicated. This review highlights the available evidence for AMPK-targeted anti-TNBC activity of various agents or treatment strategies, with special attention placed on recent preclinical and clinical advances in the manipulation of AMPK in TNBC. The elaborative analysis of these AMPK-related signaling pathways will have a noteworthy impact on the development of AMPK regulators, resulting in efficacious treatments for this lethal disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app