Add like
Add dislike
Add to saved papers

The nuclear matrix protein Matr3 regulates processing of the synaptic microRNA-138-5p.

microRNA-dependent post-transcriptional control represents an important gene-regulatory layer in post-mitotic neuronal development and synaptic plasticity. We recently identified the brain-enriched miR-138 as a negative regulator of dendritic spine morphogenesis in rat hippocampal neurons. A potential involvement of miR-138 in cognition is further supported by a recent GWAS study on memory performance in a cohort of aged (>60 years) individuals. The expression of miR-138, which is encoded in two independent genomic loci (miR-138-1 and -2), is subject to both cell-type and developmental stage-specific regulation, the underlying molecular mechanisms however are poorly understood. Here, we show that miR-138-2 is the primary source of mature miR-138 in developing rat hippocampal neurons. Furthermore, we obtained evidence for the regulation of miR-138-2 biogenesis at the level of primary miRNA processing. Using biochemical pull-down assays, we identified the nuclear matrix protein Matrin-3 as pri/pre-miR-138 interacting protein and mapped the interaction to the pri/pre-miR-138-2 loop region. Matrin-3 loss-of-function experiments in HEK293 cells and primary neurons together with protein localization studies suggest an inhibitory function of Matrin-3 in nuclear pri-miR-138-2 processing. Together, our experiments unravel a new mechanism of miR-138 regulation in neurons, with important implications for miR-138 regulation during neuronal development, synaptic plasticity and memory-related processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app