Add like
Add dislike
Add to saved papers

Ligands of NOD2 (Muramyl Dipeptide) and TLR4 (LPS) in 24 h after Combined In Vivo Administration Produce a Synergistic Increase in the Content of Multipotent Stromal Cells in the Bone Marrow and Peritoneal Exudate of CBA Mice.

In 24 h after combined administration of ligands of NOD2 (muramyl dipeptide) and TLR4 (LPS) receptors to CBA mice, a synergistic increase (by 10 times compared to the intact control) in cloning efficiency and content of multipotent stromal cells was observed in the bone marrow in comparison with the total effects of their individual administration (by 2.1 and 4.1 times, respectively). A similar effect was also observed in the peritoneal exudate. When ligands were administered simultaneously, the concentration of osteogenic multipotent stromal cells in the bone marrow decreased to a greater extent than in case of individual injections of the ligands, but did not drop below 7% of the control, which is apparently indicative of a decline threshold. In 3 h after simultaneous addition of the ligands in vitro to 12-day primary cultures of mouse bone marrow stromal cells, a synergistic increase in TNFα concentration was observed (32-fold increase from the level of intact control), while IL-10 concentration did not differ from the control, which is indicative of the proinflammatory nature of the process and the absence of immunosuppressive effect. These results suggest that activation of the stromal tissue depends on the intensity of innate immunity reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app