Add like
Add dislike
Add to saved papers

Redox, immune and genetic biomarker system for personalized treatments in colorectal cancer.

BACKGROUND: Identifying biomarkers for the risk of developing degenerative processes linked to aging and colorectal cancer (CRC) onset that could improve clinical strategies.

AIM: To determine valid targets and a predictive biomarker's system of chronicization of inflammation for cancer treatment.

METHODS: A group of 147 CRC patients was studied. Clinical diagnosis was confirmed histopathologically, and patients were sub-typed using the pathological tumor-node-metastasis classification. Thirteen colon adenoma patients and 219 healthy subjects were also studied. A system biology study on Thioredoxin1/CD30 redox-immune systems (Trx1/CD30), T helper cytokines and polymorphisms of killer immunoglobulin-like receptors, FcγRIIa-131 H/R and FcγRIIIa-158 V/F was carried out. Enzyme-linked immunosorbent assay was performed to analyze sera. Genetic study was executed by polymerase chain reaction sequence-specific primers and sequence-based typing method. Statistical analysis was performed by using the "Statgraphics software systems".

RESULTS: We found a positive increase between Trx1/RTrx1 levels and sCD30 level and increased age. With respect to the gender relationships, there were distinct differences. Females showed a primary relationship between transforming growth factor beta (TGFβ) with Trx1, whereas males had one with TGFβ and RTrx1. Trx1/CD30 controls the redox immune homeostasis, and an imbalance in the relationship between the Trx1/RTrx1 and sCD30 levels is linked to the onset and progression of tumor. This event happens through different gender-specific cytokine pathways. Our study demonstrated that the serum levels of Trx1/RTrx1, TGFβ/interleukin (IL)6 and TGFβ/IL4 combinations and the sCD30, IFNγ and IL2 combination constitute a predictive gender specific biomarker system. This is relevant for clinical screening to detect the risk of the potential development or progression of a tumor.

CONCLUSION: Oxidative stress on Trx1/CD30 is a trigger of cancer disease, and the selected oxidation and immune products are a biomarker system for aging and cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app