Add like
Add dislike
Add to saved papers

Marek's Disease Virus Disables the ATR-Chk1 Pathway by Activating STAT3.

Journal of Virology 2019 Februrary 21
Oncogenic virus replication often leads to genomic instability, causing DNA damage and inducing the DNA damage response (DDR) pathway. The DDR is a cellular pathway that senses DNA damage and regulates the cell cycle to maintain genomic stability. Therefore, the DDR pathway is critical for the viral lifecycle and tumorigenesis. Marek's disease virus (MDV), an α-herpesvirus that causes lymphoma in chickens, has been shown to induce DNA damage in infected cells. However, the interaction between MDV and host DDR is unclear. In this study, we observed that MDV infection causes DNA strand breakage in chicken fibroblast cells (CEFs), along with an increase in DNA damage markers, p53 and p21. Interestingly, we showed that phosphorylation of STAT3 was increased during MDV infection, concomitantly with a decrease of Chk1 phosphorylation. In addition, we found that MDV infection was enhanced by VE-821, an ATR specific inhibitor, but attenuated by hydroxyurea, an ATR activator. Moreover, inhibition of STAT3 phosphorylation by Stattic eliminates the ability of MDV to inhibit Chk1 phosphorylation. Finally, we showed that MDV replication was decreased by Stattic treatment. Taken together, these results suggest that MDV disables the ATR-Chk1 pathway through STAT3 activation to benefit its replication. IMPORTANCE MDV is used as a biomedical model to study virus-induced lymphoma due to the similar genomic structures and physiological characteristics between MDV and human herpesviruses. Upon infection, MDV induces DNA damage, which may activate the DDR pathway. The DDR pathway has a dual impact on viruses because it manipulates repair and recombination factors to facilitate viral replication, but also initiates antiviral action by regulating other signaling pathways. Many DNA viruses evolve to manipulate the DDR pathway for promoting virus replication. In this study, we identified a mechanism used by MDV to inhibit ATR-Chk1 pathways. ATR is a cellular kinase that responds to single-strand broken DNA, which has been less studied in MDV infection. Our results suggest that MDV infection activates STAT3 to disable the ATR-Chk1 pathway, which is conducive to viral replication. This finding provides new insight into the role of STAT3 in interrupting the ATR-Chk1 pathway during MDV replication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app