Add like
Add dislike
Add to saved papers

Modelling collective motion based on the principle of agency: General framework and the case of marching locusts.

Collective phenomena are studied in a range of contexts-from controlling locust plagues to efficiently evacuating stadiums-but the central question remains: how can a large number of independent individuals form a seemingly perfectly coordinated whole? Previous attempts to answer this question have reduced the individuals to featureless particles, assumed particular interactions between them and studied the resulting collective dynamics. While this approach has provided useful insights, it cannot guarantee that the assumed individual-level behaviour is accurate, and, moreover, does not address its origin-that is, the question of why individuals would respond in one way or another. We propose a new approach to studying collective behaviour, based on the concept of learning agents: individuals endowed with explicitly modelled sensory capabilities, an internal mechanism for deciding how to respond to the sensory input and rules for modifying these responses based on past experience. This detailed modelling of individuals favours a more natural choice of parameters than in typical swarm models, which minimises the risk of spurious dependences or overfitting. Most notably, learning agents need not be programmed with particular responses, but can instead develop these autonomously, allowing for models with fewer implicit assumptions. We illustrate these points with the example of marching locusts, showing how learning agents can account for the phenomenon of density-dependent alignment. Our results suggest that learning agent-based models are a powerful tool for studying a broader class of problems involving collective behaviour and animal agency in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app