Add like
Add dislike
Add to saved papers

A pilot study of metabolic fitness effects of weight-supported walking in women with obesity.

BACKGROUND: This is an exploratory pilot study of novel technology enabling people with mobility disability to walk with minimal effort, in the "sedentary range". The study's premise is that impairment of the leading physical activity of daily living, walking, is a major contributor to a dysmetabolic state driving many prevalent "civilization diseases" associated with insulin resistance.

METHODS: We explore within-subject changes in standard oral glucose tolerance (OGT) tests including metabotropic molecules after 22 twice-weekly, 30-minute bouts of weight-supported light-moderate physical activity in 16 non-diabetic obese, otherwise healthy, reproductive-age, volunteer women walking on an "anti-gravity" lower-body positive pressure (LBPP) treadmill.

RESULTS: Subjects had reference base-line fasting plasma glucose and triglycerides (TG) but 2-hr OGT insulin levels of 467 ± 276 pmol • liter-1 (mean± S.D.) indicating nascent insulin resistance, compared to post-study 308 ± 179 (p = 0.002). Fasting TG decreased from 0.80 ± 0.30 mmol • liter-1 to 0.71 ± 0.25 (p = 0.03). Concomitantly plasma total ghrelin decreased from 69.6 ± 41.6 pmol • liter-1 to 56.0 ± 41.3 (p = 0.008). There were no statistically significant changes in body weight or any correlations between weight change and cardiometabolic markers. However, there were robust positive correlations between changes among different classes of peptides including C-reactive protein-Interleukin 6, leptin-adiponectin, β-endorphin-oxytocin and orexin A (r 2 = 0.48-0.88).

CONCLUSION: We conclude that brief, low-dose physical activity, walking on an anti-gravity LBPP treadmill may improve cardiometabolic risk, exhibiting favorable changes in neuro-regulatory peptides without weight loss in people with problems walking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app