Add like
Add dislike
Add to saved papers

De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.

Here we show that Generative Topographic Mapping (GTM) can be used to explore the latent space of the SMILES-based autoencoders and generate focused molecular libraries of interest. We have built a sequence-to-sequence neural network with Bidirectional Long Short-Term Memory layers and trained it on the SMILES strings from ChEMBL23. Very high reconstruction rates of the test set molecules were achieved (>98%), which are comparable to the ones reported in related publications [2,3]. Using GTM, we have visualized the autoencoder latent space on the two-dimensional topographic map. Targeted map zones can be used for generating novel molecular structures by sampling associated latent space points and decoding them to SMILES. The sampling method based on a genetic algorithm was introduced to optimize compound properties "on the fly". The generated focused molecular libraries were shown to contain original and a priori feasible compounds which, pending actual synthesis and testing, showed encouraging behavior in independent structure-based affinity estimation procedures (pharmacophore matching, docking).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app