Add like
Add dislike
Add to saved papers

Superconductivity in bilayer graphene intercalated with alkali and alkaline earth metals.

With the enormous research activity focused on graphene in recent years, it is not surprising that graphene superconductivity has become an attractive area of research. To date, no superconducting properties have been experimentally observed in the pristine form of graphene but controllable structure manipulation is a promising way to induce a superconducting state in graphene-based systems. Therefore, herein we investigate the possible superconductivity in two-layer graphene intercalated with atoms of alkali and alkaline earth metals. Results of our calculations conducted within the framework of density functional theory combined with the Eliashberg theory allow us to conclude that the Cooper pairing in these superconductors can be described in a standard phonon-mediated scenario. In this regime, C6XC6 (X = K, Ca, Rb and Sr) are expected to be superconductors with estimated superconducting critical temperatures of 5.47-14.56 K and with the ratios of energy gap to transition temperature exceeding the value predicted by the Bardeen-Cooper-Schrieffer theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app