Add like
Add dislike
Add to saved papers

Theoretical predication of the high hydrogen evolution catalytic activity for the cubic and tetragonal SnP systems.

By means of density functional theory (DFT) calculations, we have systematically investigated the structures and hydrogen evolution reaction (HER) catalytic activities for the cubic and tetragonal SnP systems, both of which can be viewed as the stacking of SnP layers possessing structural features similar to the famous phosphorene. It is revealed that the (111) and (200) facets are the possible exposed surfaces of the cubic structure, while the possible exposed surfaces of the tetragonal structure are (101), (101[combining macron]), (110), (002) and (002[combining macron]) facets. The computed surface energies reveal that the P-terminated (111) surface and the (200) surface of the cubic SnP system as well as the P-terminated (101) and (101[combining macron]) surfaces and the (110) surface of the tetragonal SnP system can be considered as the more stable surfaces, in view of more favorable surface energy. The computed free energy values of H* (ΔGH*) show that all these stable surfaces can possess considerably high HER catalytic activity over a wide range of hydrogen coverage. It is found that the top sites over P atoms can serve as the most active sites on these surfaces, and the tetragonal structure can even exhibit a higher HER activity than the cubic structure. Moreover, the correlative catalytic mechanisms have been analyzed in detail. Coupled with the metallic conductivity, two kinds of bulk SnP systems can be very promising candidates as a high-performance and low-cost HER electrocatalyst. All these fascinating findings can be beneficial for promoting the application of excellent SnP-based materials in catalyzing the water splitting process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app