Add like
Add dislike
Add to saved papers

In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly(dimethylsiloxane): An AFM nanoindentation approach.

Nanomechanical characteristics of end grafted polymer brushes were studied by AFM based, colloidal probe nanoindentation measurements. A high-density polymer brush of poly(2-hydroxyethyl methacrylate) (PHEMA) was precisely prepared on the surface of a flexible poly(dimethylsiloxane) (PDMS) substrate oxidized in ultraviolet/ozone (UVO). Exposure times less than 10min resulted in laterally homogeneous oxidized surfaces, characterized by a SiOx thickness ∼35nm and an increased modulus up to 9MPa, as shown by AFM nanoindentation measurements. We have demonstrated that a high surface density of up to ∼0.63chains/nm2 of the well-defined PHEMA brushes can be grown from the surface of oxidized PDMS by surface-initiated atom transfer radical polymerization (SI-ATRP) from trimethoxysilane derivatives mixed-SAM. The reversible nanomechanical changes of PHEMA layer between extended (hydrated state) and collapsed (dehydrated state) chain upon immersing in selective and non-selective solvents were investigated by in situ AFM nanoindentation analysis in liquid environments. The elastic modulus derived from force-indentation curves obtained for swollen PHEMA grafted chains in water was estimated to be equal 2.7±0.2MPa, which is almost two orders of magnitude smaller than the modulus of dry PHEMA brush. Additionally, under cyclohexane immersion, the modulus of the PHEMA layer decreased by one order of magnitude, indicating a more compact chain packing at the PDMS surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app