Add like
Add dislike
Add to saved papers

Gold nanoparticle-carboxymethyl cellulose nanocolloids for detection of human immunodeficiency virus type-1 (HIV-1) using laser light scattering immunoassay.

It is estimated that over 100 million people have been infected with human immunodeficiency virus (HIV-1) resulting in approximately 30 million deaths globally. Herein, we designed and developed novel nano-immunoconjugates using gold nanoparticles (AuNPs) and carboxymethylcellulose (CMC) biopolymer, which performed simultaneously as an eco-friendly in situ reducing agent and surface stabilizing ligand for the aqueous colloidal process. These AuNPs-CMC nanocolloids were biofunctionalized with the gp41 glycoprotein receptor (AuNPs-CMC-gp41) or HIV monoclonal antibodies (AuNPs-CMC_PolyArg-abHIV) for detection using the laser light scattering immunoassay (LIA). These AuNPs-CMC bioengineered nanoconjugates were extensively characterized by morphological and physicochemical methods, which demonstrated the formation of spherical nanocrystalline colloidal AuNPs with the average size from 12 to 20 nm and surface plasmon resonance peak at 520 nm. Thus, stable nanocolloids were formed with core-shell nanostructures composed of AuNPs and biomacromolecules of CMC-gp41, which were cytocompatible based on in vitro cell viability results. The AuNPs-CMC-gp41 nanoconjugates were tested against HIV monoclonal antibodies conjugates (AuNPs-CMC_PolyArg-abHIV) using the light scattering immunoassay (LIA) where they behaved as active nanoprobes for the detection at nM level of HIV-1 antigenic proteins. This strategy offers a novel nanoplatform for creating bioprobes using green nanotechnology for the detection of HIV-1 and other virus-related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app