Add like
Add dislike
Add to saved papers

cRGD target liposome delivery system promoted immunogenic cell death through enhanced anticancer potency of a thymidine conjugate under UVA activation as a cancer vaccine.

Conventional chemotherapeutic and photodynamic therapy have recently been shown to also elicit immune response against cancer through the immunogenic cell death mechanism, which can be potentially translated into effective cancer vaccines. However, there are few studies on the potential of nanodelivery system to promote the immunogenic cell death as a cancer vaccine. We reported here that cRGD target liposome delivery system was capable to promote the immunogenic cell death through enhanced potency of a thymidine conjugate post UVA activation as a cancer vaccine. Liposomes and cRGD target liposomes were found to significantly increase the cellular accumulation of the thymidine conjugate and subsequently translated into enhanced cytotoxic potency after UVA activation. More importantly, cRGD target liposomes of the thymidine conjugate markedly promoted the early detection of immunogenic cell death markers including ATP, HMGB1 and calreticulin. Subsequent in vivo vaccination-challenge study confirmed effective tumor growth inhibition by the cRGD liposomal thymidine conjugate and UVA treated cancer cells as the cancer vaccine. In addition, liposomes and cRGD target liposomes alone did not shown any induction of the immunogenic cell death markers, revealing the adjuvant nature of the nanodelivery system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app