Add like
Add dislike
Add to saved papers

Transfer and biological effects of arsenate from soil through a plant-aphid system to the parasitoid wasp, Aphidius colemani.

The accumulation of metalloid elements during transfer from contaminated soil to higher trophic levels may potentially result in the exposure of parasitic arthropods to toxic concentrations of these elements. This study examined the transfer of arsenate (As(V)) to aphids (Myzus persicae) from pepper plants cultivated in As(V) contaminated soils of two concentrations (2 and 6 mg As(V)/kg dry soil), and the subsequent biological effects on the aphid parasitoid, Aphidius colemani. Results showed that considerable quantities of As(V) were transferred to the plant in a concentration-dependent manner and were partitioned in the plant parts in the order of roots > stems > leaves. The accumulation of As(V) in the aphids increased with the concentrations in the plants; however, the transfer coefficient of As(V) from leaf to aphid was relatively similar and constant (0.07-0.08) at both soil As(V) concentration levels. Increased levels of As(V) significantly affected fecundity and honeydew production in aphids, but survival and developmental time were unaffected. Fecundity (mummification rate) of the parasitoid was not impaired by host As(V) contamination; however, vitality (eclosion rate) was significantly affected. Results are discussed in relation to possible ecological risks posed by the transfer of soil As(V) via the plant-arthropod system to parasitoid arthropods in agroecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app