Add like
Add dislike
Add to saved papers

Effects of miR-181a-5p abnormal expression on zebrafish (Danio rerio) vascular development following triclosan exposure.

Chemosphere 2019 Februrary 12
Triclosan (TCS), one of the important bactericides, is widely used in personal care products, and its chronic exposure leads to severe toxic effects on the growth and development of blood vessels in zebrafish (Danio rerio). Herein, we screened out three differentially expressed miRNAs (miR-181a-5p, miR-132-3p and miR-128-3p) by sequencing and qRT-PCR analyses of 4-96-hpf TCS-exposed zebrafish, among which miR-181a-5p was found to regulate many signaling pathways involved in fatty acid biosynthesis and phosphatidylimositol signaling systems. By O-dianisidine staining, TCS-exposure resulted in decreased distribution of red blood cells and induced blood hypercoagulable state and thrombotic effects. Defective subintestinal veins (SIVs), and decreased branching and curvature of blood vessels were observed with increasing TCS-exposure concentrations. After microinjection of miR-181a-5p mimic and inhibitor, zebrafish malformation type and percentage were prominently increased such as distorted SIV vessels along with reduced venation and abnormal branches by ALP staining. Overexpressed miR-181a-5p had a greater effect on development and branching patterns of arteries and veins than its knockdown. By laser confocal microscopy observation, the 72-hpf Tg (flk1: mCherry) zebrafish obviously displayed vascular proliferation and ablation in the miR-181a-5p mimic group. Microinjection of miR-181a-5p mimics and inhibitors led to abnormal expressions (20-50%) of two key target genes (pax2a and vash2) by WISH, and increased malformation percentages (18-45%) by IOD analysis. Overexpression of vash2 led to the inhibitory or promoting effects on the expression of PI3K signaling pathway-related genes, proving that the effect of vash2 on development of blood vessels could be realized by inhibiting PI3K signaling pathway. These observations lay theoretical foundation for deep insight into the molecular mechanisms on TCS-induced cardiovascular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app