Add like
Add dislike
Add to saved papers

Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: perspectives for phytoremediation.

The current research was carried out to estimate the potential of water hyacinth (WH) for removal of nine heavy metals (HMs) from three irrigation canals in Nile Delta. Sampling was achieved in monospecific and homogeneous WH stands at three irrigation canals in the study area, and WH biomass was sampled at monthly intervals from April 2014 to November 2014 using five randomly distributed quadrats (each 0.5 × 0.5 m) at each canal. All HM concentrations were significantly higher in the roots compared with the other WH organs. The WH was recognized by a bioaccumulation factor >1.0 for all HMs. The WH was recognized by translocation factor <1.0 for all HMs (except Pb). In many cases, the concentrations of the HMs in the different organs of WH were correlated with the same HMs in the water. Such correlations indicate that WH reflects the cumulative influences of environmental pollution from the water, and thereby suggesting its potential use in the bio-monitoring of most examined HMs. In conclusion, WH is a promising macrophyte for remediation of irrigation canals polluted with Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app