Add like
Add dislike
Add to saved papers

Effects of 2-(2-Chlorophenyl)ethylbiguanide on ERAD Component Expression in HT-29 Cells Under a Serum- and Glucose-Deprived Condition.

We recently characterized the cytotoxic action of a novel phenformin derivative, 2-(2-chlorophenyl)ethylbiguanide (2-Cl-Phen), on HT-29 cells under a serum- and glucose-deprived condition and found that 2-Cl-Phen attenuated ATF4 and GRP78, typical downstream targets of the unfolded protein response (UPR), together with c-Myc protein expression in a transcriptional and posttranscriptional manner. In the current study, we focused on the expression of ER-associated protein degradation (ERAD) components after treatment with 2-Cl-Phen under a serum- and glucose-deprived condition. Among nine ER-localizing factors regulating protein quality control within the ER, the amounts of Herp, GRP78, GRP94, and OS9 proteins were significantly downregulated by treatment with 2-Cl-Phen. In particular, replacement of the culture medium with the serum- and glucose-deprived medium induced the expression of Herp protein at the early phase. This increase in Herp protein was accompanied by an increase in its mRNA, and its induction was significantly dampened by 2-Cl-Phen. However, cotreatment with a proteasome inhibitor, MG132, restored Herp expression only to a limited extent. Taken together, these results show that 2-Cl-Phen changed the expression of several ERAD components, especially by transcriptional inhibition of Herp induction by 2-Cl-Phen when it occurred at an early phase, and this finding provides new insights into understanding the mechanisms of 2-Cl-Phen-mediated cytotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app