Add like
Add dislike
Add to saved papers

Enhanced phosphatidylserine-selective cancer therapy with irradiation and SapC-DOPS nanovesicles.

Oncotarget 2019 January 26
Normal living cells exhibit phosphatidylserine (PS) primarily within the intracellular leaflet of the plasma membrane. In contrast, viable cancer cells have high levels of PS on the external surface, and exhibit a broad range of surface PS, even within specific types of cancer. Agents that target surface PS have recently been developed to treat tumors and are expected to be more effective with higher surface PS levels. In this context, we examined whether surface PS is increased with irradiation. In vitro irradiation of cancer cell lines selected surviving cells that had higher surface PS in a dose- and time-dependent manner. This was more pronounced if surface PS was initially in the lower range for cancer cells. Radiation also increased the surface PS of tumor cells in subcutaneous xenografts in nude mice. We found an inverse relationship between steady state surface PS level of cancer cell lines and their sensitivity to radiation-induced cell death. In addition, serial irradiation, which selected surviving cells with higher surface PS, also increased resistance to radiation and to some chemotherapeutic drugs, suggesting a PS-dependent mechanism for development of resistance to therapy. On the other hand, fractionated radiation enhanced the effect of a novel anti-cancer, PS-targeting drug, SapC-DOPS, in some cancer cell lines. Our data suggest that we can group cancer cells into cells with low surface PS, which are sensitive to radiation, and high surface PS, which are sensitive to SapC-DOPS. Combination of these interventions may provide a potential new combination therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app