Add like
Add dislike
Add to saved papers

HOXA1 upregulation is associated with poor prognosis and tumor progression in breast cancer.

Breast cancer (BC) is the most commonly diagnosed cancer and the second leading cause of cancer-associated mortality among females worldwide. As a member of the homeobox (HOX) gene family, HOXA1 is involved in tumor progression and prognosis in several types of human cancer. However, the clinical significance and biological functions of HOXA1 in BC remains unknown. The current study assessed the expression of HOXA1 in BC tissues and cells via western blotting and reverse transcription-quantitative polymerase chain reaction. The association between HOXA1 expression and the clinicopathological features of patients with BC was analyzed using the Chi-square test. The overall survival of patients was calculated using the Kaplan-Meier method and examined using the log-rank test. Cell proliferation was examined via an MTT assay. Cell cycle distribution and cell apoptosis were analyzed using flow cytometry. The current study demonstrated that HOXA1 mRNA and protein expression was upregulated in BC. In addition, HOXA1 overexpression was associated with poor prognosis and advanced clinicopathological features in patients with BC. Furthermore, knockdown of HOXA1 significantly inhibited cell proliferation by enhancing cell apoptosis and cell cycle arrest in BC cells, which was accompanied with aberrant expression of cell cycle and apoptosis-associated proteins, cyclin D1, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4. Taken together, the results suggested that HOXA1 may serve as a novel prognostic marker and therapeutic target in BC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app