Add like
Add dislike
Add to saved papers

Pressure build-up and stress variations within the Earth's crust in the light of analogue models.

Scientific Reports 2019 Februrary 20
Strength contrasts and spatial variations in rheology are likely to produce significant stress differences in the Εarth's crust. The buildup and the relaxation of stresses have important consequences for the state of stress of the brittle crust, its deformational behaviour and seismicity. We performed scaled analogue experiments of a classic wedge-type geometry wherein we introduced a weak, fluid-filled body representing a low-stress heterogeneity. The experiments were coupled to direct pressure measurements that revealed significant pressure differences from their surrounding stressed matrix. The magnitude of the pressure variations is similar to the magnitude of the differential stress of the strongest lithology in the system. When rocks with negligible differential stresses are considered, their pressure can be more than twice larger than the surrounding lithostatic stress. The values of the pressure variations are consistent with the stresses that are estimated in analytical studies. This behaviour is not restricted to a particular scale or rheology, but it requires materials that are able to support different levels of stress upon deformation. For non-creeping rheological behaviours, the stress and pressure variations are maintained even after deformation ceases, implying that these stress variations can be preserved in nature over geological timescales.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app