Add like
Add dislike
Add to saved papers

A startling acoustic stimulation (SAS)-TMS approach to assess the reticulospinal system in healthy and stroke subjects.

Reticulospinal (RS) hyperexcitability is observed in stroke survivors with spastic hemiparesis. Habituated startle acoustic stimuli (SAS) can be used to stimulate the RS pathways non-reflexively. However, the role of RS pathways in motor function and its interactions with the corticospinal system after stroke still remain unclear. Therefore, the purpose of this study was to investigate the effects of conditioning SAS on the corticospinal system in healthy subjects and in stroke subjects with spastic hemiparesis. An established conditioning SAS- transcranial magnetic stimulation (TMS) paradigm was used to test the interactions between the RS pathways and the corticospinal system. TMS was delivered to the right hemisphere of eleven healthy subjects and the contralesional hemisphere of eleven stroke subjects during isometric elbow flexor contraction on the non-impaired (or left) side. Conditioning SAS had similar effects on the corticospinal motor system in both healthy and stroke subjects, including similar SAS-induced motor evoked potential (MEP) reduction at rest, but not during voluntary contraction tasks; similar magnitudes of TMS-induced MEP and force increment and shortening of the silent period during voluntary elbow flexor contraction. This study provides evidence that RS excitability on the contralesional side in stroke subjects with spastic hemiparesis is not abnormal, and suggests that RS projections are likely to be primarily unilateral in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app