Add like
Add dislike
Add to saved papers

Bifunctional oxygen electrocatalyst derived from photochlorinated graphene for rechargeable solid-state Zn-air battery.

Photochlorination method was used to engineer the structural defects and covalent CCl bonds in graphene. Cl coverage of 18 atom% was successfully confirmed by X-ray photoelectron spectroscopy, and D, G and 2D peaks changes upon irradiation were monitored by Raman. The mobility of chlorinated graphene field-effect transistor decreased to 66.1 cm2 /(V s) in comparison to pristine graphene of 730.4 cm2 /(V s). Raman indicated that the defects and CCl bonds are sensitively associated with the irradiation time, thus the structural defects and composition can be engineered accordingly. Given the creation of active sites, namely the polarization of carbon, as well as fast ionic and electronic transport, chlorinated graphene has demanded features for electrocatalytic reactions. As a proof of concept, chlorinated vertically-oriented graphene grown on carbon cloth (CC@VG) served as excellent bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) free-standing electrodes, showing overpotential of 405 mV for OER, Tafel slope of 56 mV, which has better durability than that of commercial Ir/C. Meanwhile, the ORR reduction peak appeared at 0.776 V vs. RHE, more positive than that of carbon cloth (0.60 V). All-solid-state Zn-air battery (ZABs) using chlorinated CC@VG as bifunctional air-cathode showed stable discharge voltage of 1.28 V at current density of 2 mA/cm2 , power density of 45.8 mW/cm2 at 80 mA/cm2 . More than 108 discharge/charge cycles (20 min per cycle) was obtained at current density of 2 mA/cm2 , and round-trip efficiency decreased from 57.4% to 50.0%. Present work developed a universal chlorination method to endow carbonaceous materials with abundant defects and polarized carbon as active site as efficient bifunctional electrocatalysts, and opened a new avenue for developing promising air-cathodes for rechargeable solid-state ZABs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app