Add like
Add dislike
Add to saved papers

Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF).

This paper describes the development of two microfluidic paper-based analytical devices (μPADs), one well-based and the other based on a lateral flow assay (LFA) configuration, to detect glucose via a colorimetric assay using the solid metal-organic framework (MOF) Zr-PCN-222(Fe), to encapsulate glucose oxidase (GOx). The well-based platform consisted of laminate sheets and multiple layers of wax-printed chromatography paper. Solutions of KI and glucose placed into the well flowed through the device and reacted with the GOx@MOF species sandwiched between the paper layers realizing a yellow-brown color. The LFA platform consisted of chromatography paper between parafilm and polyvinyl acetate (PVA) layers. GOx@MOFs spotted on the paper subjected to solutions of KI and glucose yielded a brown color. The devices were then dried, scanned, and analyzed yielding a correlation between average inverse yellow intensity and glucose concentrations. The development of these devices employing MOFs as biomimetic catalysts should further expand the applications of microfluidic technologies for sensors a variety of analytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app