Add like
Add dislike
Add to saved papers

Therapeutic blockade of HMGB1 reduces early motor deficits, but not survival in the SOD1 G93A mouse model of amyotrophic lateral sclerosis.

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disease without effective treatment. The receptor for advanced glycation end products (RAGE) and the toll-like receptor (TLR) system are major components of the innate immune system, which have been implicated in ALS pathology. Extracellularly released high-mobility group box 1 (HMGB1) is a pleiotropic danger-associated molecular pattern (DAMP), and is an endogenous ligand for both RAGE and TLR4.

METHODS: The present study examined the effect of HMGB1 inhibition on disease progression in the preclinical SOD1G93A transgenic mouse model of ALS using a potent anti-HMGB1 antibody (2G7), which targets the extracellular DAMP form of HMGB1.

RESULTS: We found that chronic intraperitoneal dosing of the anti-HMGB1 antibody to SOD1G93A mice transiently improved hind-limb grip strength early in the disease, but did not extend survival. Anti-HMGB1 treatment also reduced tumour necrosis factor α and complement C5a receptor 1 gene expression in the spinal cord, but did not affect overall glial activation.

CONCLUSIONS: In summary, our results indicate that therapeutic targeting of an extracellular DAMP, HMGB1, improves early motor dysfunction, but overall has limited efficacy in the SOD1G93A mouse model of ALS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app